Specification

Model: 12V 2/6/10/12/15A

Model No: I-7012

Revision: 1.0

ACDelco.	12V Fully Automatic Battery Charger
ALDEICO.	For Most DC 12V Rechargeable Lead-acid Batteries
+ Battery Maintenance Perform battery maintenance and charging at the same time!	Amp

Table of Contents

- 1 INPUT REQUIREMENTS
- 1.1 INPUT VOLTAGE
- 1.2 INPUT FREQUENCY
- 1.3 INPUT CURRENT
- 1.4 INPUT PROTECTION
 - 1.4.1 INPUT CURRENT PROTECTION
- 1.5 EFFICIENCY
 - 2 OUTPUT REQUIREMENTS
- 2.1 OUTPUTPOWER
- 2.2 OUTPUT VOLTAGE AND CURRENT
- 2.3 REFERENCE CHARGING CURVE
- 2.4 OVER POWER PROTECTION
- 2.5 SHORT CIRCUIT POTECTION
- 2.6 FAN SPEED CONTROL BY THERMAL SENSOR
- 2.7 A MAINTENACE PULSE CHARGE
- 2.8 INSUFFICIENT POWER
 - **3 ENVIRONMENT**
- 3.1 OPERATING / STORAGE TEMPERATURE
- 3.2 HUMIDIIY
- 3.3 SHOCKAND VIBRATION
 - 3.3.1 SHOCKNON-OPERATION
 - 3.3.2 VIBRATION
- 3.4 CALCULATED MEAN TIME BEIWEEN FAILURES (MIBF)
 - 4 SAFEIY

- 4.1 DIELECTRIC VLOTAGE WITHSTAND (HI-POT)
- 4.2 PRODUCT DROP TEST
- 4.3 BALL IMPACT TEST
- 4.4 STRAIN RELIEF TEST
- 4.5 CLAMP ATTACHMENT SECURITY
- 4.6 HANDLE ATTACHMENT SECURITY
- 4.7 CLAMP RETENTION
- 4.8 CORROSION RESISTANCE

4.9 SWITCH OPERABILITY

- **5** EMC SPECIFICATION
- 5.1 EMI REQUIREMENTS
 - 6 MECHANICAL
- 6.1 DIMENSION

6.1.1 PRODUCT

6.1.2 CLAMP

6.2 MATERIAL

6.2.1 ENCLOSURE

6.2.2 CLAMP

- 6.2.3 TACT SWITCH
- 6.3 INPUT CONNECTOR AND OUTPUT CABLE

6.3.1 INPUT CONNECTOR/AC CORD

6.3.2 OUTPUT CABLE

1 INPUT REQUIREMENTS

1.1 INPUT VOLTAGE

The power supply must operate on a sinusoidal input voltage de ned in table 1.

Input Range	Minimum	Nominal	Maximum	Unit
180V-264V	180	230	264	Vac

Table 1 - Input Voltage Range

1.2 INPUT FREQUENCY

The power supply shall operate within speci cation $50 \sim 60 \pm 3$ Hz.

1.3 INPUT CURRENT

Maximum steady state input current shall not exceed 2 for any line voltage speci ed in table 2

1.4 INPUT PROTECTION

1.4.1 INPUT CURRENT PROTECTION

A fuse with rating of 3.15 A / 250 V(Time Lag) shall be installed on the input line side near the input connector to **pr**ided protection to the power supply.

1.5 EFFICIENCY

The power supply e ciency shall not be less than <u>80%</u> at the maximum load of section 2.2(230/50Hz)

2 OUTPUT REQUIREMENTS

2.1 OUTPUT POWER

Unit total output power, under steady state conditions, shall not exce<u>ed</u> 200W.

2.2 OUTPUT VOLTAGE AND CURRENT

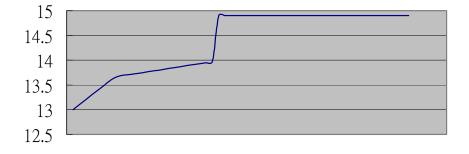

	Output Voltage	Voltage Range		Current Range
	output voltage	Lower Limit	Upper Limit	ourient nunge
1	+15V	14.5	15.0	10A
		13.5	14.3	15A

 Table 2 - Output Voltage and Current

Note: 1). The output voltage should be measured at output connector terminals

2.3 REFERENCE CHARGING CURVE

Charging Voltage

2.4 OVER POWER PROTECTION

Over power protection shalloperate at <u>110% Max.</u> of rated power de ned in section 2.2 at table-1 line input conditions.

2.5 SHORT CIRCUIT POTECTION

Power supply shall have self-limiting protection protect against short circuit or overload conditions. No damage to the supply shall resuffrom intermittent short circuit condition.

2.6 FAN SPEED CONTROL BY THERMALSENSOR

Stop: 0° C to 30° C Mid rate: 30° C to 60° C Max rate: >60°C

2.7 MAINTENANCE PULSE CHARGE

Current rate: 800mA Max. Charging Voltage: 14V +-10%

2.8 INSUFFICIENT POWER

Voltage: under 7V

3 ENVIRONMENT

3.1 OPERATING / STORAGE TEMPERATURE

Operation: 0 to 40° C.

Storage: -20 to 80°C

3.2 HUMIDITY

Operation: 10% to 90% RH, non-condensation.

Storage : 5% to 95% RH, including condensation.

3.3 SHOCK AND VIBRATION

3.3.1 SHOCK NON-OPERATION

The unit shall be subjected to a series $f \sin(6)$ shocks, one(1) on each side, Top and bottom. Each shock shall consist of a 50G half sine wave pulse with a velocity change of 167 in/sec.

3.3.2 VIBRATION

Operating: 10-250Hz, 0.25Gs peak to peak, 3 axes, 15 min sweep.

Non-Operation: 10-300Hz, 2.0Gs peak to peak, 3 axes, 15 min sweep.

3.5 CALCULATED MEAN TIME BETWEEN FAILURES (MTBF)

Power supply shall have a calculated MTBF of greater than <u>30,000</u> hours, calculated utilizing MIL-HDBK-217F with the following assumptions:

Input voltage: 230Vac / 50Hz

Output load: Rated full load

Ambient temperature: 25 degrees C

4 SAFETY

Unless otherwise speci ed, the supply is designed to meet <u>BS</u> approved addition/or equivalent safety standards for use in Battery Charger Equipment. Speci c agency certi cations will be applied at customer's request and cost.

UK: BS APPROVED

Note: Leakage current shall be less tha<u>n 0.50 mA</u>at input voltage o<u>f 230Vac / 50Hz</u>.

4.1 DIELECTRIC VLOTAGE WITHSTAND (HI-POT)

The power supply shall withstand following Hi-pot test without breakdown.

4242 Vdc line to ground for 1 minute.

4242 Vdc input to output for 1 minute.

Note: Time duration may reduce to 1 second on production.

4.2 PRODUCT DROP TEST

Number of Drops: 3 times.

Height: 90 cm

Floor surface: Concrete Floor

Judging Criteria : To withstand Hi-Pot Test, and without electrical breakdown.

4.3 BALL IMPACT TEST

Ball Spec. : Steel Ball , Diameter=51.8 m/m, Weight=535 gw

Height of Drop : 90 cm

Number of Drops: 3 times.

Judging Criteria : To withstand Hi-Pot Test, and without electrical breakdown.

4.4 STRAIN RELIEF TEST

The strain relief withstand a pull force of 35 lb applied for 1 minute in a direction most likely to cause damage.

4.5 CLAMP ATTACHMENT SECURITY

Conductor is securely attached to clamp conductor to clamp connection withstands a 35 lb tensile load without separation.

4.6 HANDLE ATTACHMENT SECURITY

Handle to enclosure connection withstands 4 times weight of the charger with separation.

4.7 CLAMP RETENTION

Clamp provides good terminal gripping capability. Clamp does not become dislodged from 5/8 inch diameter lead terminal post when pulled with a force of 10 lb at 90 degrees to the axis of the clamp.

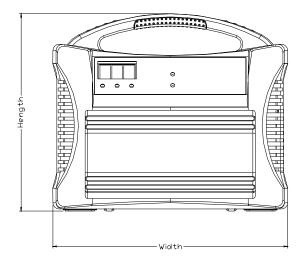
4.8 CORROSION RESISTANCE

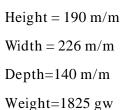
Clamp demonstrates no excessive surface corrosion after 12 hours exposure to 100% humidity 100°F.

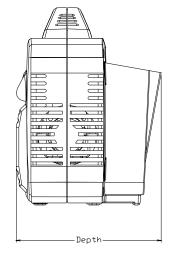
4.9 SWITCH OPERABILITY

Withstands 200 ON / OFF cycles (energized) with no evidence of electrical or mechanical malfunction.

5 EMC SPECIFICATION


5.1 EMI REQUIREMENTS


- To comply with Low Voltage Directive 73/23/EEC
- To comply with EMC Directive 89/336/EEC


6 MECHANICAL

6.1 **DIMENSION**

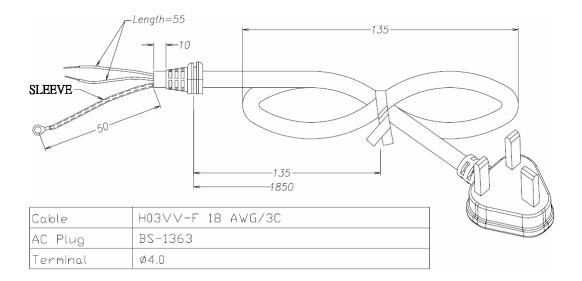
6.1.1 PRODUCT

6.1.2 CLAMP

Length = 92.7 m/m Width = 56 m/m Jaw Length =35 m/m Jaw Width =18 m/m Weight =40 gw

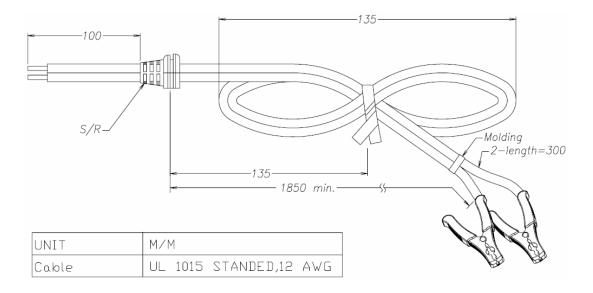
6.2 MATERIAL

6.2.1 ENCLOSURE


Housing – Plastic ABS UL 94-V0 Bind Cable – Silicon Rubber Foot Pad – NBR Rubber

<u>6.2.2 CLAMP</u>

Clamp – SPCC , Nickel-plate Clamp Spring – SUS-4 Handle – PU


6.3 INPUT CONNECTOR AND OUTPUT CABLE

6.3.1 INPUT CONNECTOR

6.3.2 OUTPUT CABLE

The output cable shall be <u>6 ft mmlong, A1015 12 AWGX2C</u> wire, and <u>Black/RED</u> in color.

